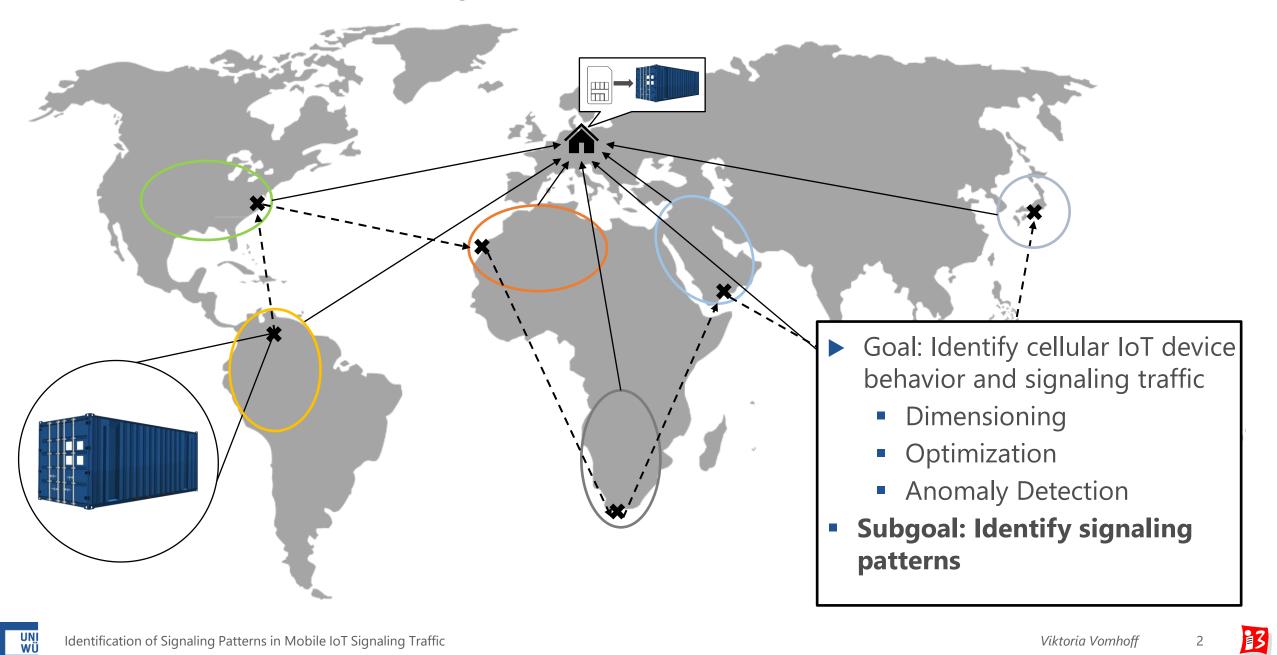
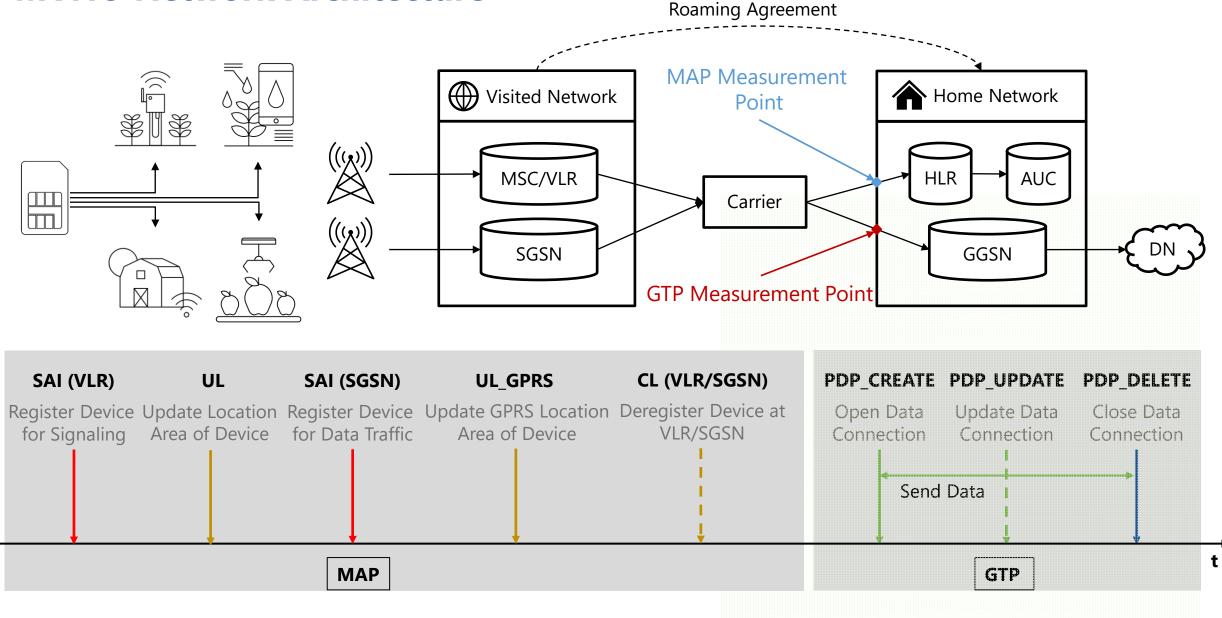


Institute of Computer Science Chair of Communication Networks Prof. Dr. Tobias Hoßfeld


Identification of Signaling Patterns in Mobile IoT Signaling Traffic

Viktoria Vomhoff, Stefan Geißler, Tobias Hoßfeld


informatik.uni-wuerzburg.de/comnet

Global Mobile Connectivity

MVNO Network Architecture

UNI WÜ **B**3

Dataset Overview

> 1 TB signaling data in January 2020 consisting of MAP and GTP signaling messages of 2G and 3G traffic

334 network operators in 189 countries

1.4 billion signaling messages for signaling procedures and data connection establishment

> 270 000 different IoT devices in different verticals

Dataset Extract

•	start ‡	countryName 🗘	operatorName 🗘	srcSsn 🔶	destSsn ÷	type ‡	typeReason 🗘	contextIdentifier +	calling [‡]	called [‡]	ci [‡]	simId [‡]
1	1577838508557952	Italy	Wind			PDP_CREATE	_Success	2719383723151152595			-523455028	-1481178181
2	1577838514800709	Italy	Wind			PDP_DELETE	_Success	2719383723151152595			-523455028	-1481178181
3	1577838517383336	Italy	Wind			PDP_CREATE	_Success	5123166520896927353			-523455028	-1481178181
4	1577838526288792	Italy	Wind	VLR	HLR	SAI	_Success	NA	87a16f1c445b223b	9011c685dd51	NA	-1481178181
5	1577838528026966	Italy	Wind			PDP_DELETE	_Success	5123166520896927353			-523455028	-1481178181
6	1577838528173903	Italy	Wind	SGSN	HLR	SAI	_Success	NA	055e7d9bcad78c7	31270ea83bca4	NA	-1481178181
7	1577838528913784	Italy	Wind	SGSN	HLR	UL_GPRS	_Success	NA	055e7d9bcad78c7	31270ea83bca4	NA	-1481178181
8	1577838540417838	Italy	Wind			PDP_CREATE	_Success	4745543740383142770			-523455028	-1481178181
9	1577838552687562	Italy	Wind			PDP_DELETE	_Success	4745543740383142770			-523455028	-1481178181
10	1577838554928880	Italy	Wind			PDP_CREATE	_Success	8086379500549479712			-523455028	-1481178181
11	1577838567742393	Italy	Wind	VLR	HLR	SAI	_Success	NA	87a16f1c445b223b	9011c685dd51	NA	-1481178181
12	1577838569683684	Italy	Wind	SGSN	HLR	SAI	_Success	NA	48c4e849a6afc16f	9011c685dd51	NA	-1481178181
13	1577838569952356	Italy	Wind	SGSN	HLR	SAI	_Success	NA	48c4e849a6afc16f	9011c685dd51	NA	-1481178181
14	1577838570443358	Italy	Wind	SGSN	HLR	UL_GPRS	_Success	NA	48c4e849a6afc16f	9011c685dd51	NA	-1481178181
15	1577838570453276	Italy	Wind	HLR	SGSN	CL	_Success	NA	31270ea83bca41ef	055e7d9bcad78	NA	-1481178181
16	1577838570583205	Italy	Wind			PDP_DELETE	_Success	8086379500549479712			-523455028	-1481178181
17	1577838582233852	Italy	Wind			PDP_CREATE_ERROR	APN Congestion	1064904887227189655			-523455028	-1481178181
18	1577838593946793	Italy	Wind	VLR	HLR	SAI	_Success	NA	87a16f1c445b223b	9011c685dd51	NA	-1481178181
19	1577838596032998	Italy	Wind	SGSN	HLR	SAI	_Success	NA	055e7d9bcad78c7	9011c685dd51	NA	-1481178181
20	1577838596508138	Italy	Wind	SGSN	HLR	UL_GPRS	_Success	NA	055e7d9bcad78c7	9011c685dd51	NA	-1481178181
21	1577838596543997	Italy	Wind	HLR	SGSN	CL	_Success	NA	31270ea83bca41ef	48c4e849a6afc	NA	-1481178181
22	1577838608672724	Italy	Wind			PDP_CREATE	_Success	-1468804619796263228			-523455028	-1481178181
23	1577838615441483	Italy	Wind			PDP_DELETE	_Success	-1468804619796263228			-523455028	-1481178181
24	1577838617671770	Italy	Wind			PDP_CREATE	_Success	4133615174808866698			-523455028	-1481178181
25	1577838626069067	Italy	Wind	VLR	HLR	SAI	_Success	NA	87a16f1c445b223b	9011c685dd51	NA	-1481178181

UNI WÜ

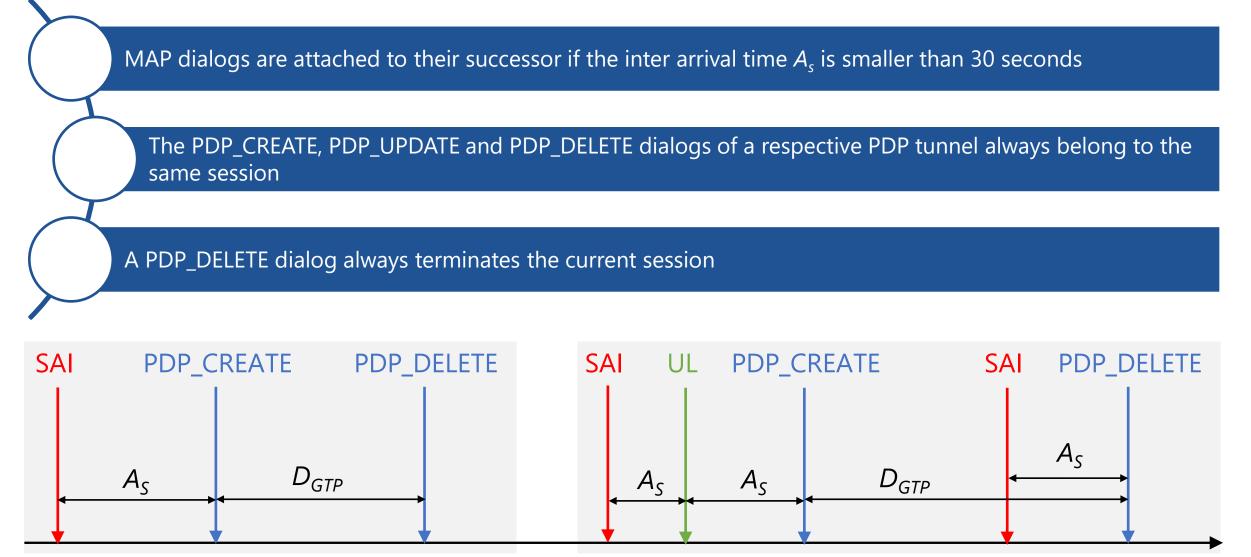
Problem Formulation

Heterogeneity of IoT devices

- Different amount of data
- Stationary vs mobile
- Periodic vs non-periodic
- Only traffic at home network
- No knowledge of device type
- Device behavior not always as specified

Difficult for network
 operator to design and
 scale system and identify
 abnormal devices

 Goal: Identify cellular IoT device behavior and signaling traffic


 Create generalizable device model

WÜ

Session Detection

Goal: Identification of common signaling patterns

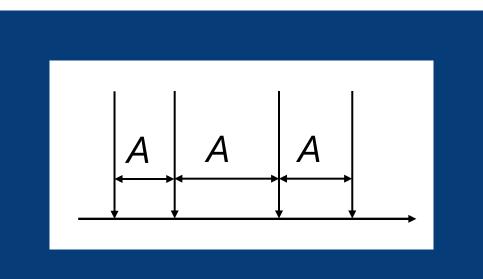
UNI WÜ **i**3

Session Library

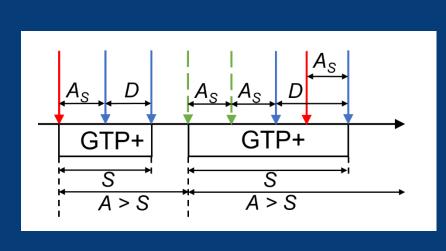
ld	Session	Pct. of Occurrences	Cum. Percentage	Session Type
1	PDP_CREATE → PDP_DELETE	0.23	0.23	GTP
2	SAI	0.22	0.45	MAP
3	SAI \rightarrow PDP_CREATE \rightarrow PDP_DELETE	0.075	0.52	GTP+
4	$SAI \rightarrow SAI$	0.059	0.58	MAP
5	UL	0.045	0.63	MAP
6	PDP_CREATE \rightarrow PDP_UPDATE \rightarrow PDP_DELETE	0.044	0.67	GTP
7	SAI \rightarrow SAI \rightarrow PDP_CREATE \rightarrow PDP_DELETE	0.043	0.72	GTP+
8	PDP_CREATE \rightarrow SAI \rightarrow PDP_DELETE	0.034	0.75	GTP+
9	$SAI \rightarrow UL$	0.024	0.77	MAP
10	UL_GPRS	0.023	0.80	MAP

- ► The top 10 patterns account for 80 % of all signaling traffic
- 174 712 239 sessions have been identified, grouped into 721 565 unique session types
- ▶ 80% of the unique session types only occur once

UN


WÜ

UNI WÜ


Statistical Model

- 1 message type
- 1 iat distribution

Session Based Model

- Session library
- MAP modifier
- GTP modifier
- Mobility flag
- 5 iat distributions

UNI WÜ

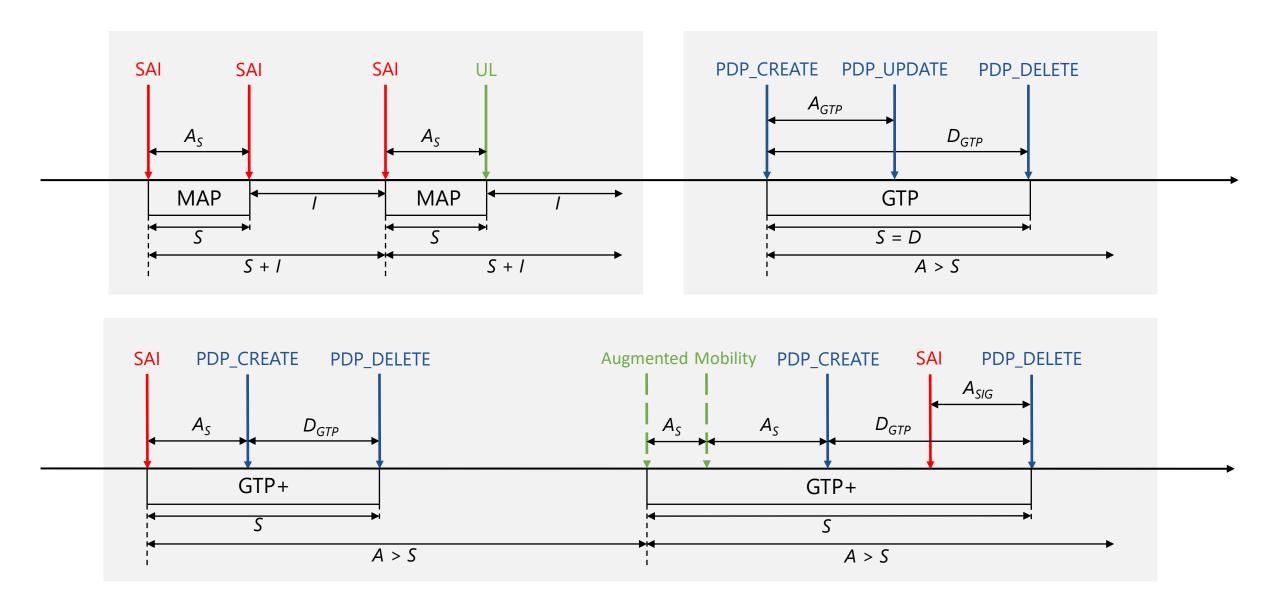
Statistical Model

- 1 message type
- 1 iat distribution

Pros:

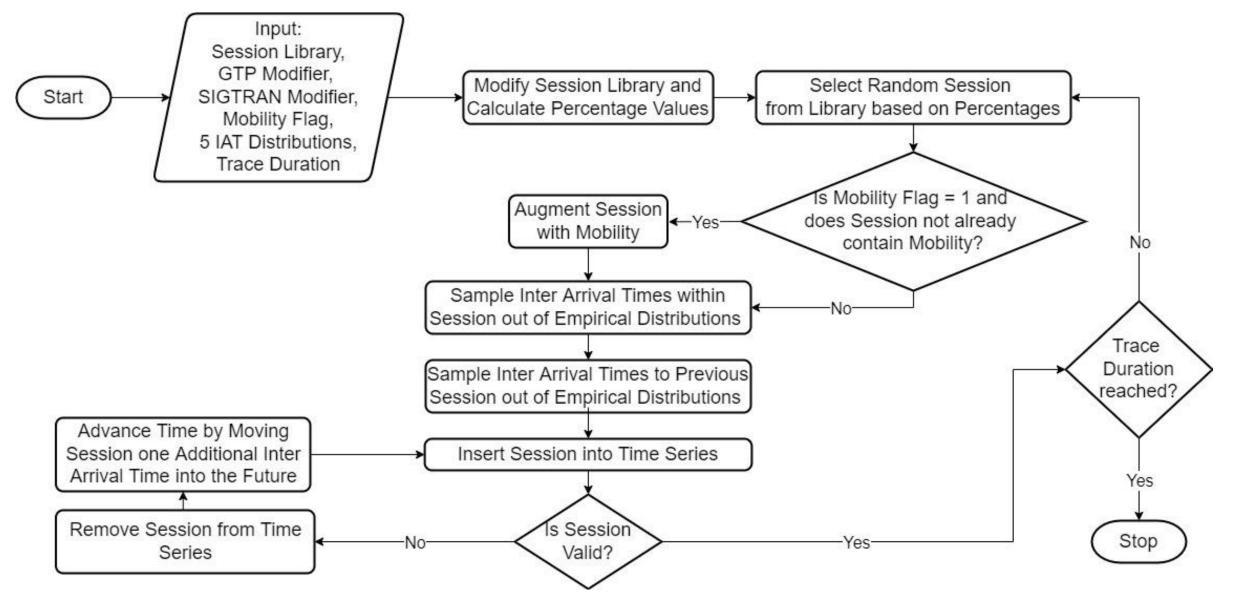
- Simple
- No temporal correlation
 Cons:
- Few options for parametrizations
- No different message types

Session Based Model


- Session library
- MAP modifier
- GTP modifier
- Mobility flag
- 5 iat distributions

Pros:

- Respects temporal correlations
- Reflects system state
- Can model different device behaviors
- Cons:
- Complex

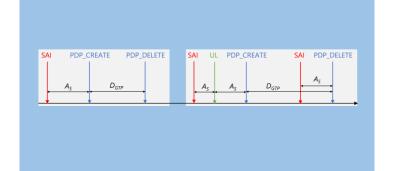

E3

Model Scenarios

UNI WÜ

Model Flow Chart (WIP)

UN


WÜ

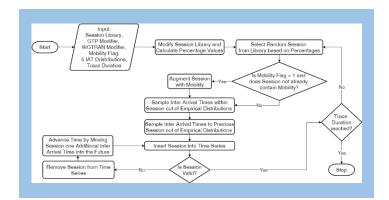
B3

Conclusion

Goal: Identification of common signaling patterns

Summary

- Analyze one month of signaling traffic
- Create Session Detection algorithm to identify signaling patterns
- Use patterns to describe device behavior


WÜ

Results

Id	Session	Pct. of Occurrences	Cum. Percentage	Session Type
1	PDP_CREATE → PDP_DELETE	0.23	0.23	GTP
2	SAI	0.22	0.45	MAP
3	SAI → PDP_CREATE → PDP_DELETE	0.075	0.52	GTP+
4	$SAI \rightarrow SAI$	0.059	0.58	MAP
5	UL	0.045	0.63	MAP
6	PDP_CREATE → PDP_UPDATE → PDP_DELETE	0.044	0.67	GTP
7	SAI \rightarrow SAI \rightarrow PDP_CREATE \rightarrow PDP_DELETE	0.043	0.72	GTP+
8	PDP_CREATE → SAI → PDP_DELETE	0.034	0.75	GTP+
9	SAI → UL	0.024	0.77	MAP
10	UL_GPRS	0.023	0.80	MAP

- Session Detection algorithm consisting of three criteria
- Session Library containing every session and its commonness

Future Work

- Improve 30s threshold
- Analyze correlations of sessions
- Examine behavior different from signaling procedures