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Motivation

• Object admission to the cache is not instantaneous
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Contributions

13

• Extending an exact model of the caching hierarchy under random network delays

– Calculating the exact mean response time for cache hierarchies → Importance? 

• Standing on the shoulders of

– On the Impact of network delays on Time-to-Live caching [Elsayed]

– Exact TTL Cache Hierarchy model under zero delay [Berger, Ciucu, 2014]

[Elsayed] K. Elsayed, and A. Rizk, “On the Impact of Network Delays on Time-to-Live Caching,”  ArXiv abs/2201.1157, 2022.
[Berger] D. S. Berger et al. “Exact Analysis of TTL Cache Networks,” Performance Evaluation, vol. 79, pp. 2 – 23, 2014.
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TTL Cache Model 

• Admission → object is assigned a time to live (TTL)

• Eviction → TTL expiration

• Hit → TTL gets renewed 

• Objects are decoupled in the cache
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Inter-request
time TTL

Delay

 M/ M/ M                  M: exponentially distributed, PH: phase type, E: Erlang
Our work:



NETWORKS AND COMMUNICATION SYSTEMS

Single M/M/M cache

• One object in/out of the cache is modelled using MAPs

• MAP has 3 states: 
• State “1”: Object in the cache
• State “0”: Object out of the cache
• State “F”: Object being fetched

24
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Cache Hierarchy MAP

• Goal: model the cache hierarchy using a total MAP

• Approach: Exact recursive superposition of single cache MAPs
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Cache Hierarchy MAP

• Goal: model the cache hierarchy using a total MAP

• Approach: Exact recursive superposition of single cache MAPs

• From leaf caches: 

– Level superposition of siblings

– Line superposition of parent-children
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Superposition

• Construction of a system MAP from individual MAPs

• Based on the Kronecker sum of individual MAPs

• All the combination of states with the corresponding transitions.

0

1

F

λ1

μ1

μF1

λ1

0

1

F

λ2

μ2

μF2

λ2

M
1

M
2

(D0 , D1)=(D0
(1) , D1

(1)
)⊕(D0

(2) , D1
(2)

)

M=M 1⊕M 2

34

C
1

C
2

C
3



NETWORKS AND COMMUNICATION SYSTEMS

Superposition

• Construction of a system MAP from individual MAPs

• Based on the Kronecker sum of individual MAPs

• All the combination of states with the corresponding transitions.

• Independent caches → Level superposition

(D0 , D1)=(D0
(1) , D1

(1)
)⊕(D0

(2) , D1
(2)

)

M=M 1⊕M 2
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• Line superposition → Dependent caches 
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• Line superposition → Dependent caches 

• Approach?
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Superposition

• Line superposition → Dependent caches 

• Approach?

– Kronecker sum → problems?
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Superposition

• Line superposition → Dependent caches 

• Approach?

– Kronecker sum → problems?

– e.g., “1F”→  Parent fetching while object in 

child cache
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Complexity

• Model complexity  

– Number of states of the final MAP grows exponentially with the number 
of caches in the tree. 

• Approach to reduce model complexity (while still exact) [Elsayed]

– Leverage the symmetric structure within the tree.

– Lumping the equivalent states.

41

[Elsayed] K. Elsayed, and A. Rizk, “On the Impact of Network Delays on Time-to-Live Caching,”  ArXiv abs/2201.1157, 2022.
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Response Time 

• The mean response time      depends on

– The mean fetching delay
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Response Time 
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Response Time 

• The mean response time      depends on

– The mean fetching delay

– The average miss rate at each cache

Single M/M/M cache:

• Hit → zero delay

• Miss → 

• How to calculate           ?      
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Response Time 
Single cache miss rate  

• From  the MAP  →          contains the active transitions
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Response Time 
Single cache miss rate  

• From  the MAP  →          contains the active transitions

• Exact mean response time
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Response Time 
M/M/M Cache Hierarchy

• Iterative accumulation of fetching delays due to the misses at each cache
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• The fetching process is represented by multiple states
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Response Time 
PH fetching delay

• The fetching process is represented by multiple states

– Example: Erlang-2 distribution

• Aggregate requests see different mean delays

• Arrivals at states [1, 0, F
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]  see mean delays 
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PH fetching delay

• The fetching process is represented by multiple states
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Response Time 
PH fetching delay

• The fetching process is represented by multiple states

– Example: Erlang-2 distribution

• Aggregate requests see different mean delays

• Arrivals at states [1, 0, F
1 
, F

2
]  see mean delays 

  

• For any fetching delay distribution
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⊙ :Hadamard prodcut
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Response Time 
• Using the same concept we can calculate 
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Response Time 
• Using the same concept we can calculate 

– Mean response time for each input stream
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Response Time 
• Using the same concept we can calculate 

– Mean response time for each input stream

– Mean response time given a system hit/miss
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Response Time 
• Using the same concept we can calculate 

– Mean response time for each input stream

– Mean response time given a system hit/miss

– Mean response time given a PH/PH/PH hierarchy
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Evaluation 
 Delay impact on hit probability 

77

mean delay time / mean Inter-request time
Trace from SNIA, 2011. “Storage Networking Industry Association's Input/Output Traces, Tools, and Analysis Technical Work Group”. Iotta.snia.org

• Two level M/M/M hierarchy 

– Simulation (only for validation)

– MAP (Exact model)

– Renewal approximation (based on Related work)
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Evaluation 
 Response time 
• Two level M/ E

2 
/ E

2 
hierarchy

– Simulation (only for validation)

– MAP (Exact model)
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Conclusion & Future direction
 
• Fetching delays in cache hierarchies remarkably impact the performance (response time 

and hit probability)

• MAPs for cache hierarchies are formed recursively to provide an exact model with delays

• Mean response time is iteratively calculated from the MAP

• Open topic: The Response time distribution derivation given the MAP of a cache hierarchy

79


	Slide: 1
	Slide: 2
	Slide: 3
	Slide: 4
	Slide: 5
	Slide: 6
	Slide: 7
	Slide: 8
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 9 (5)
	Slide: 10
	Slide: 11
	Slide: 12
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21
	Slide: 22
	Slide: 23
	Slide: 24
	Slide: 25
	Slide: 26
	Slide: 27
	Slide: 28
	Slide: 29
	Slide: 30
	Slide: 31
	Slide: 32
	Slide: 33
	Slide: 34
	Slide: 35
	Slide: 36
	Slide: 37
	Slide: 38 (1)
	Slide: 38 (2)
	Slide: 38 (3)
	Slide: 38 (4)
	Slide: 38 (5)
	Slide: 38 (6)
	Slide: 38 (7)
	Slide: 38 (8)
	Slide: 38 (9)
	Slide: 38 (10)
	Slide: 39 (1)
	Slide: 39 (2)
	Slide: 39 (3)
	Slide: 40 (1)
	Slide: 40 (2)
	Slide: 40 (3)
	Slide: 40 (4)
	Slide: 40 (5)
	Slide: 40 (6)
	Slide: 40 (7)
	Slide: 40 (8)
	Slide: 40 (9)
	Slide: 40 (10)
	Slide: 40 (11)
	Slide: 41 (1)
	Slide: 41 (2)
	Slide: 41 (3)
	Slide: 41 (4)
	Slide: 41 (5)
	Slide: 41 (6)
	Slide: 41 (7)
	Slide: 42 (1)
	Slide: 42 (2)
	Slide: 42 (3)
	Slide: 42 (4)
	Slide: 43
	Slide: 44
	Slide: 45

