

Nurefşan Sertbaş Bülbül, Doğanalp Ergenç, Mathias Fischer Department of Computer Science Universitaet Hamburg

Evaluating Dynamic Path Reconfiguration for Time-Sensitive Networks

WueWoWAS '22

Time Sensitive Networking

- Safety and mission critical networks
 - IoT sensors, autonomous cars, industrial facilities
- "Low-latency and deterministic networking"
 - Bounded latency and a reliable delivery of data as a requirement
 - A violation of latency constraints
- IEEE Time-Sensitive Networking
 - Improves Ethernet with real-time capabilities
 - Enables use of ethernet in the mission critical environments
 - Mixed traffic scenarios
 - Guarantees proper transmission of (mission)-critical data

Motivation

- TSN flow reservation concept
 - Initial declaration of requirements
 - (Usually) established at start-up time of an application
 - Remain untouched until the flow ends
- Future network scenarios
 - Accommodating large number of flows
 - Degradation of resource utilization over time
 - Sub-optimal flow placement
 - Some flows cannot be embedded due to capacity limitations on certain links
- Solution: Enabling the migration of existing flows
 - Without interrupting ongoing traffic
 - Preserving strict QoS constraints for critical traffic

Question:

Is it possible to seamlessly migrate time-sensitive flows for *better* flow placement ?

Direct Flow Embedding Scenario

- When a new flow (f2:S2 to S4) can be directly put to its new path
 - No migration is needed

Flow Migration Scenario

- A new flow (f2:S3 to S4) cannot directly handled !
 - MUST wait until f1 migrated to its new path

Dynamic path (re)configuration for TSN networks

- SDN-based framework
 - Global network view
 - Collection & inclusion of application requirements
- How to model our path computation problem ?
 - E2E paths for given demands under different QoS requirements
 - Including latencies derived from gate configuration per port
 - Objective: Minimizing the overall E2E communication latency

Time-sensitive optimal routing problem (TSOR)

Objective: Minimizing the overall latency of the selected paths

	$min \sum_{d \in D} \sum_{p \in P_d} \sum_{e \in E} x_{dp} \alpha_{ep} \left[l_e^o + l_e^q (1 - 1) \right]$	$g_{es})]$
assignment	$\sum_{p \in P_d} x_{dp} = 1$	$\forall d \in$
link capacity	$\sum_{d\in D} \sum_{p\in P_d} x_{dp} \alpha_{ep} h_d \leq c_e$	$\forall e \in E$
gate conf.	$\sum_{s \in S} g_{es} = 1$	$\forall e \in E$
additional gate conf.	$\left[g_{es} - \sum_{d \in D} \sum_{p \in P_d} x_{dp} \alpha_{ep} \frac{h_d}{c_e} \ge 0\right]$	$\forall e \in E, \ \forall s \in S$
demand latency	$\left[\sum_{p \in P_d} \sum_{e \in E} x_{dp} \alpha_{ep} \left[l_e^o + l_e^q (1 - g_{es}) \right] \le l_d \right]$	$\forall d \in D$
put:		Decision va

- Output:
 - end-to-end paths for given demands under different QoS requirements \rightarrow
 - gate configurations for each switch

 x_{dp}

 g_{es}

 \rightarrow

	Different path comparation strategies with varying degrees of constraints								
	Restricted path reconfiguration: TSOR	Reconfiguration at every path request: TSOR-U		Threshold-triggered reconfiguration: TSOR-T		Reconfiguration at every k-th path request: TSOR-P			
\rightarrow k	Keeps the previous demands fixed	 → Enables replanning all path configurations from scratch 		→ Reconfigure if the computed objective exceeds a threshold		→ Reconfiguration in dependence on the arrival rate of flows			
i	Reduced flexibility	Increased (re)configuration overhead							

Different path configuration strategies with varying degrees of constraints

Idea: Keep some demands fixed & reconfigure remaining

Cost of flow migration

- Latency of frames should not violate their latency requirements (aka deadlines)
 - Processing latency
 - Queuing latency
 - Transmission & propagation latency

What about latency due to migration ?

f1: f2: f2 path request Migration of f1 Embedding f2 $t=t_1$ $t=t_2$ $t=t_3$ f2: path computation + flow rule installation (f1) Migration affects frames come between t_1 and t_3

How does real time flow migration affects packet delivery under realistic TSN settings ?

Evaluation

- OMNeT++ simulations
 - Optimization problem is solved by CPLEX
- Traffic generation

Category	Parameter	Value			
	Transmission period	Uniform(2,20) ms			
Time-triggered traffic	Frame size	50-1000 bytes			
	Data-rate distribution	pareto, uniform, normal			
Best_effort traffic	Transmission period	Exponentially distributed			
Dest-chort frame	Frame size:	1500 bytes			

- Real-world topologies from Topology Zoo dataset
- Evaluation metrics
 - Missing Deadline Ratio
 - Reconfiguration Overhead
 - Configuration Time

Performance of TSOR-P and TSOR-T is highly related to the chosen parameters

- (Re)configuration strategy can be selected depending on the requirements of the environment
 - Highly dynamic small/medium scale environments

Future work

- Future use cases requires more frequent flow migrations
 - Rerouting due to failures
 - Dynamic traffic patterns
- Performance as a significant design criteria
 - Estimate the reconfiguration cost and related benefits (reduced E2E latency) <u>before</u> taking a decision
 - Dual objectives with the aim to
 - (i) minimize the overall latency of the selected paths
 - (ii) minimize the reconfiguration cost

Universität Hamburg

NUREFSAN SERTBAS BULBUL

University of Hamburg Department of Informatics Computer Networks (NET) PhD Candidate

Vogt-Kölln-Straße 30, 22527 Hamburg, Germany Phone: +49 176 42883-2352

nurefsan.sertbas@uni-hamburg.de sertbas@informatik.uni-hamburg.de

