

WueWoWAS'23 | 29.06.2023 | Würzburg

On Data Plane Multipath Scheduling for Connected Mobility Applications

Martin Herrmann, Amr Rizk

Motivation – Cooperative Connected Automated Mobility Example: Corridor Management

- Object blocks the road
- Connected Automated Vehicles (CAVs) only have a limited Field of View
- CAV can not safely pass the object
- Naive solution: human operator has take over to resolve the situation

Scenario – Corridor Management

- Better solution: Coordination of CAVs
 - Both CAVs send coordination messages to the MEC
 - MEC sends coordination messages back •
 - Result: Right CAV slows/waits in lane until • left CAV passes

Car 1

- Multipath communication paths
 - Allow for redundant/reliable communication
 - Do we always want that? ٠

NORKS AND COMMUNICATION SYS'LEIVER The Ruhr Institute for Software Technology Prof. Dr.-Ing. Amr Rizk

Problem statement (1) The Setup

- Multiple communication technologies are availble
 - Each with their own characteristics e.g. 5G NR, ITS-G5, mmWave WiFi
- Scheduler
 - Possibly duplicates and maps packets to paths
 - Drops duplicated packets on arrival

UNIVERSITÄT

D_U_I_S_B_U R G

Offen im Denken

Problem statement (2)

- Assumptions:
 - A stream is not split on paths (no fork then join)
 - A stream may be replicated on multiple paths
 - Locally FIFO per path; priority scheduling per path possible (if N streams per path)
- Goals:
 - Explore the scheduler design space in terms of throughput vs. reliability (through replication)
 - We are mainly concerned with a metric of the form $P[delay \ge x] \le \varepsilon_x$
 - Adaptively decide on mapping of streams to paths

ND COMMUNICATION SYSTE Prof. Dr.-Ing. Amr Rizk The Ruhr Institute for Software Technology

NIVERSITÄT

ຼບູເ_ຣຣຼ_ອູບ R G

Options for realizing Multipath schedulers

- Scheduler in user space
 - Flexible
 - Slower
- Scheduler in kernel space (tc/XDP)
 - Restricted
 - Fast
 - Programming in terms of Traffic Control (tc) or eXpress Data Path (XDP)
- Realization on the data plane
 - Transparency

The Ruhr Institute for Software Technology Prof. Dr.-Ing. Amr Rizk

Realization (1)

- Scheduling programs are written in C
- The programs have to pass a bpf (Berkeley packet filter) verifier
- Programs are loaded onto ingress and egress as filters for qdiscs
 - Can be changed beforehand and possibly at runtime

The Ruhr Institute for Software Technology Prof. Dr.-Ing. Amr Rizk

Realization (2)

•

- Sender side: packets are cloned or written on specified interfaces
 - Actions and interfaces are specified in the programs
- Receiver side: Remove clones from data stream
 - Highly non-trivial for TCP
 - OBU MEC Can also be used for in-band monitoring Scheduler.c Scheduler.c Арр Арр User Kernel **BPF** Verifier **BPF** Verifier virt. If virt. If lf₁ lf₁ Тс Tc Net. Net. Tc Tc Ingress Stack Egress Ingress Stack Egress lf_n lf_n

The Ruhr Institute for Software Technology Prof. Dr.-Ing. Amr Rizk

UNIVERSITÄT

DUISBURG ESSEN

Offen im Denken

NCS, Prof. Dr. Amr Rizl

- Analytical model shows the latency improvement through packets replication
- Assumptions:
 - 2 paths only

Analytical Model

- inter-packet times T is iid exponential exp(λ)
- service times X are iid exponential exp(μ)
- Model limitations:
 - Pure replication
 - Open loop
- Model can be adapted to encompass more realistic traffic and scheduling

- Response time distribution
 - from the response time recursion

$$r \stackrel{D}{=} \max_{n \ge 0} \left\{ \sum_{i=1}^{n+1} \min_{j \le 2} \left\{ X_{i,j} \right\} - \sum_{i=1}^{n} T_{i-1} \right\}$$

- Bound on the tail of the response time distribution
 - using Doob's inequality [Ciucu'21]

$$\begin{split} \mathsf{P}\left[r\geq\sigma\right] &\leq \mathsf{E}\left[e^{\theta\min_{j}X_{1,j}}\right]e^{-\theta\sigma}\\ \mathsf{P}\left[r\geq\sigma\right] &\leq \frac{2\mu}{\lambda}e^{-(2\mu-\lambda)\sigma} \end{split}$$

Summary and conclusions

- Different CCAM scenarios require different grades of throughput and reliability
 - adaptive scheduling of streams to mutliple available communication technologies comes to the rescue
- Goal: provide flexible model-based multipath schedulers on the data plane to
 - explore the scheduling design space of throughput vs. reliability
 - allow optimizations later on (e.g. using the model shown)
- Currently first realizations will be tested in a joint 5G testbed for autonomous vehicles in the city of Ulm

WueWoWAS'23 | 29.06.2023 | Würzburg

Thank you for your attention

Martin Herrmann, Amr Rizk

