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Orchestration & Autonomic Computing

Orchestration

”Service Orchestration refers to the composition of system components to support the
Cloud Providers’ activities in arrangement, coordination and management of computing
resources to provide Cloud services to the Cloud Consumers” [1].

Autonomic Computing

Autonomic Computing is a property of software systems that fulfill the following four
properties, taken from [2].

Self-configuring: The system shall dynamically configure itself to adapt to
changing environments

Self-healing: The system shall detect and react to errors

Self-optimizing: The system shall optimally assign resources to improve overall
system performance

Self-protection: The system shall detect and react to hostile behavior
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MAPE-K

Figure 1: MAPE-K Architecture [2]
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Computing Paradigms

Figure 2: Computing Paradigms [3]
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Learning Principles

The approximation theorem states that a feed-forward network with a linear output layer
and at least one hidden layer with any“squashing”activation function can approximate
any function from one finite-dimensional space to another with any desired non-zero
amount of error provided that the network is given enough hidden units. [cf. 4]

Figure 3: Federated Peer to Peer [5]
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Isolation Forests

Figure 4: Isolation Forest Bias [6]

Figure 5: Extended Isolation Forest Bias [6]
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Comparison of Traditional and Software-Defined Networking

Figure 6: Difference Traditional and Software Defined Networking [7]
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Solution Space

Dynamic Event Handling

Dynamic Event Handling requires strong monitoring and data analysis processing.

Kubernetes’ Scalability Considerations

The Kubernetes Scheduler scores fewer nodes when too many nodes are available:
”Kubernetes calculates a figure using a linear formula that yields 50% for a 100-node
cluster and yields 10% for a 5000-node cluster”1.

Support for Node Scalability

Our approach implements decentralized scoring such that every nodes scores itself to
avoid running in such performance issues.

1https://kubernetes.io/docs/concepts/scheduling-eviction/scheduler-perf-
tuning/#default-threshold
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Intelligent Container Resource Estimation

A user enters the following three pieces of information for new deployments:

A hierarchy for the application deployment

A filled out chart rating about resource usage for each container

The deployment configuration with the Docker container configuration
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Figure 7: Hierachy of nodes for filtering
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Figure 8: Radar chart for
resource estimation
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Cloud Layer
Load Detection

The machine learning process aims to approximate a function that reflects the resource
usage at the given time. A two layer neural network for function approximation receives
the timestamp as input and returns the expected scor er esour ces value, which averages
the CPU and memory usage (cf. Equation 2.1).

scor er esour ces = cpu usag e +mem usag e

2
(2.1)
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Cloud Layer
Taint Detection

Concept of tainted nodes is taken from Kubernetes [8].
Taint detector checks if any node fulfills one of the following conditions:

CPU Load over 60%

Memory Load over 60%

Disk Load over 60%
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Cloud Layer
Anomaly Detection

For each container and host, we use the following parameter to generate the Extended
Isolation Forest:

CPU usage

Memory usage

Disk usage

Network RX/TX rates

Figure 9: Non-anomaly plot Figure 10: Anomaly plot
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Fog Layer

The detection listener is the P in our MAPE-K architecture. It reacts to the analysis
done by the cloud layer by looking up event handlers in the detection repository. If we
specify an event handler for the given scenario, the detection listener makes an HTTP
call to the event handler URL.
The deployment requester deploys new containers and interacts with edge nodes for
agreement and scoring.
It needs to know the hierarchy for the application deployment with its container
configurations.
With this resource estimation a service can be deployed on an appropriate node.
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Edge Layer

As our target devices are edge devices, we also want to add factors like disk usage
and network usage to the set of metrics M and calculate their utilization.
Combining the exploitation factor f , where f is in [0,1], with the resource utilization
equations, we finally calculate the overall node utilization score by Equation 2.2.

M = {
cpu,mem,di sk,net

}
Sx = Tx −Sr eq x − f ∗Pr eq x

Tx
f or x ∈ M

scor e1 =
∑

x∈M Sx

|M |

(2.2)
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Federated Learning Workflow
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Approximation of the Load Detection I

Figure 11: Comparison of different approximations through the load detection function
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Approximation of the Load Detection II

Explanations

Blue dots are the score values over time, the orange line is the approximated
function.

Layer 1 and 2 node count, given as a fraction, like 1/2 or 1/4

Minimum load time is between 00:13 and 00:15 in this scenario.

Difference between the configurations is mostly insignificant.

The size of the layers does not make a significant difference in finding the minimum
value
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Reflection on Research Goals

Conclusion

Evaluate the MAPE-K architecture for container orchestration

Dynamic event handling

Support for node scalability

Intelligent container resource estimation

Future Work

Container migration

Constraints and goals (similar to DRAGON [9])

Privacy and security

Testing in real production environment

Federated Learning for Service Placement in Fog and Edge Computing | MD, MG, DL | CNG 23/25



Introduction &
Motivation

Architecture

Evaluation

Conclusion

References

References

[1] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, D. Leaf et al., “Nist cloud computing reference
architecture,”NIST special publication, vol. 500, no. 2011, pp. 1–28, 2011.

[2] I. A. Computing, “White paper: An architectural blueprint for autonomic computing,” 2005.

[3] “Edge and fog computing: Their practical uses,”
https://iot.electronicsforu.com/content/tech-trends/edge-and-fog-computing-practical-uses/, accessed:
2021-12-01.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[5] L. Chou, Z. Liu, Z. Wang, and A. Shrivastava, “Efficient and less centralized federated learning,” in Machine
Learning and Knowledge Discovery in Databases. Research Track, N. Oliver, F. Pérez-Cruz, S. Kramer, J. Read,
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