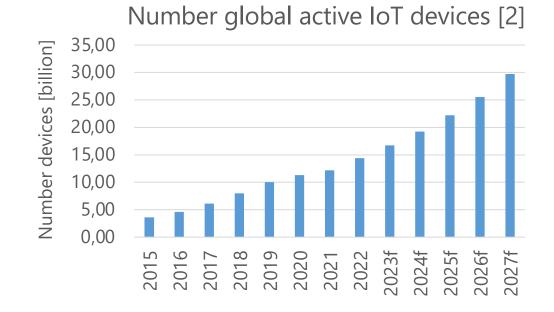
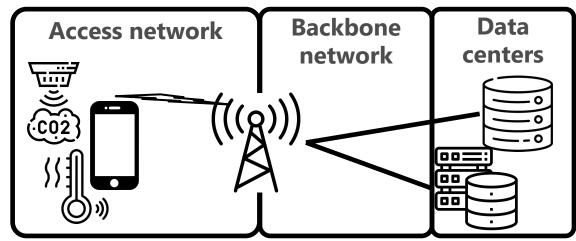




Institute of Computer Science Chair of Communication Networks Prof. Dr. Tobias Hoßfeld




# Paving the Way for an Energy Efficient and Sustainable Future Internet of Things


Frank Loh, Simon Raffeck, Stefan Geißler, Tobias Hoßfeld

comnet.informatik.uni-wuerzburg.de

### **Motivation**

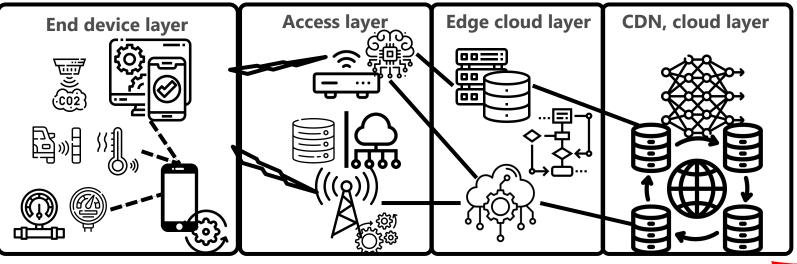
- Energy consumption of ICT sector
  - Globally estimated to 4% 6% in 2020 [1]
  - Challenging to reduce required energy
  - In the future: more entities, load, tasks
- Nearly 15 billion active IoT devices worldwide [2]
  Expected growth of 16% per year by 2027
- Internet of Things influences
  - Access network
  - Backbone network
  - Data centers
- Research question: How can we quantify and improve energy efficiency in the IoT?





[1] Parliamentary Office of Science and Technology, UK; [2] IoT Analytics

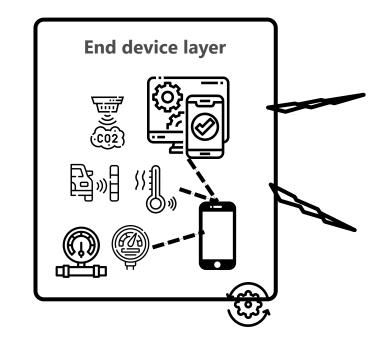
13

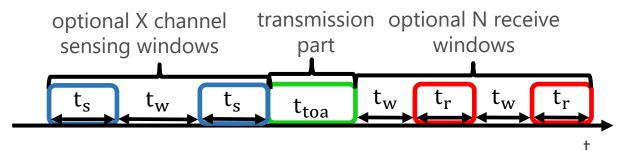

### **Background: Relevant Network Layers**

- Task: determine energy efficiency of IoT applications
- Question: Good energy efficiency definition?
  - Energy per packet/per GB of traffic?
  - Energy to operate instance for specific time?
  - Energy per (server) instance per task?

#### Quantify energy consumption first

- Measurement strategy?
- Where can we measure?
- Where can we reduce energy consumption?
- Split network in layers and improve individually

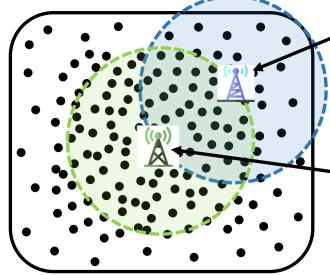

- Different layers
  - End device layer
  - Access layer
  - Edge cloud layer
  - Cloud layer
  - Investigation of each individual layer first

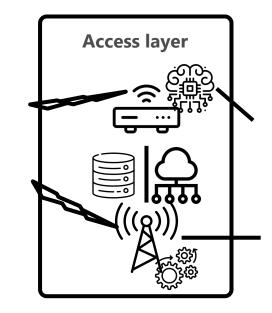



## **Energy Consumption: End Device Layer**

- Direct energy consumption reduction (of single device) by
  - Reduce energy for data monitoring
    - Apropriate hardware
    - Intelligent monitoring, idle, and sleep intervals
  - Limit **required processing** at the end devices
  - Usage of Low Power Wide Area Networks (LPWANs)
  - Limit number, size, and overhead of data transmissions

- Indirect energy reduction (for the complete layer) by
  - Smaller cells or better cell design
  - Less end devices or more intelligent placement



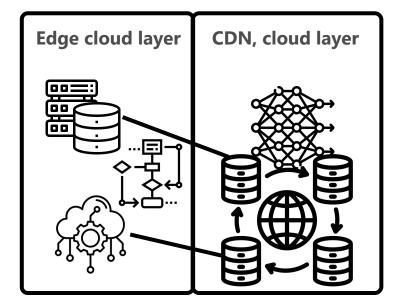

### **Energy Consumption: Access Layer**

- Efficient data processing and storage in the access layer
  - Turn not used devices and links off
  - Data pre-selection with simple models
  - Limit usage of high energy consuming processing approaches
  - Limit overhead for communication within the layer and back to end devices
  - Move specific data to edge or cloud

- Energy consumption reduction: gateways
  - Good gateway placement
  - Use gateways supporting several technologies
  - Turn gateways occasionally off

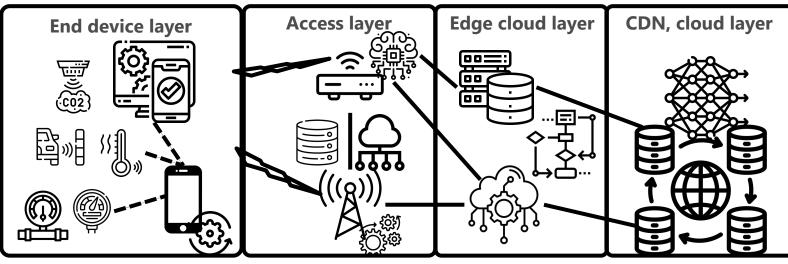





**Example gateway in traditional mobile networks (blue)** First gateway placement priority: reduce number of sensors per cell

#### Example coverage LoRaWAN (green)

First placement priority: reduce distance between sensors and gateways


## **Energy Consumption: Edge and Cloud Layer**

- Carefully select
  - If and where an edge cloud is required
  - Which data can be transmitted to large data centers
- Cloud or data center deployment
  - Critical: efficient allocation and orchestration of resources
    - Service placement within datacenters or geographic regions
    - Communication between services or regions
  - Limit overhead
    - For complex, occasionally unnecessary tasks
       Example: machine learning, model training in video streaming
    - For data processing and storage
- In general: turn instances off if not needed





### **Energy Consumption and Efficiency: Internet of Things (the Extreme Case)**

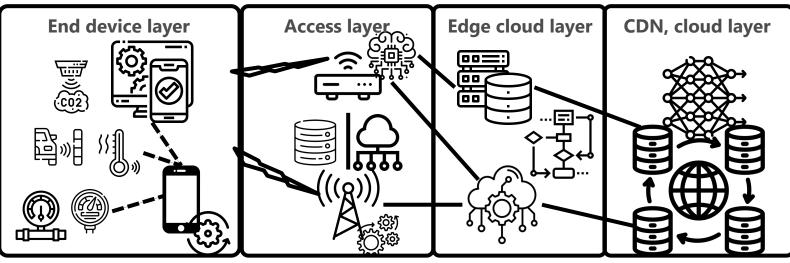


#### **End device layer**

- Short monitoring intervals
- Random channel access
- Low power wide area network
- No data processing

#### Access layer

- Single gateway type and large cells
- No data pre-processing
- Move data to backbone network


#### **Edge cloud layer**

- Not required
- Process all data in access or cloud layer
- **CDN**, cloud layer
  - Highly optimized deployment
  - Always turn machines off when not needed
  - Limit machine learning or overhead data storage
- → Specific services not possible and **bad Quality of Service** for the end user

WÜ

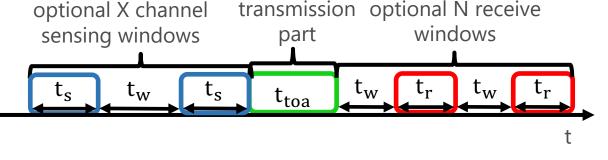


### **Energy Consumption and Efficiency: Internet of Things (the Optimal Case)**



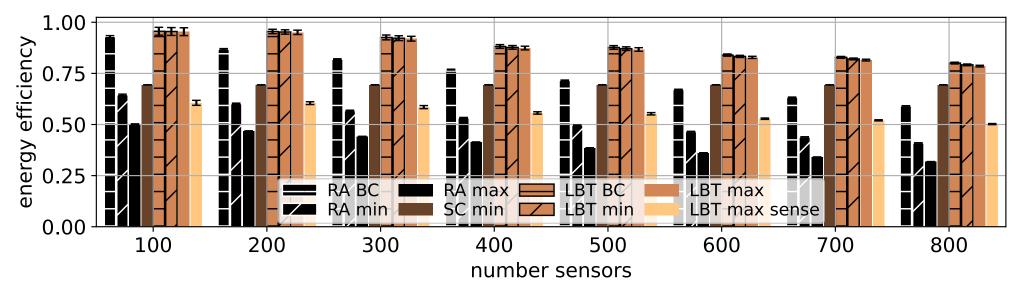
- 1. Understand application and requirements
- 2. Optimize each **individual layer**
- 3. Consider **dependencies** among layers
- 4. Quantify energy consumption in **best case**
- 5. Compare to **actual energy consumption**
- Also consider performance and resource consumption trade-offs

- Required access network considerations
  - Which access network technology?
  - Gateway type and deployment strategy?
  - Sensor deployment, measurement interval?
  - → Improvement of **Quality of Information**
- Cloud considerations
  - Edge vs. Cloud (SLA based)
  - Processing (Machine Learning required?)


### **Example: LoRaWAN – Idea**

- Consideration: Channel access and data transmission in LoRaWAN
- Channel access options
  - Random access
  - Listen before talk
  - Time scheduled
- Determination of energy consumption and energy efficiency
- Energy efficiency as ratio of best case energy consumption and actual consumption
- Best case consumption: only transmission, no overhead for channel sensing, receptions, collisions

#### Actual consumption includes


- Data transmission
- Channel sensing (listen before talk) and synchronization (time scheduled)
- Optional receive windows
- Message collision in an unreliable channel

WÜ



### **Example: LoRaWAN – Results**

Comparison of energy efficiency among different channel access approaches



- **Random access** (black) best case (RA BC) less energy efficient for more sensors
- ▶ Worse result when receive windows for random access (RA min, RA max) added
- ► **Time scheduled** approach (SC min brown) constant among number of sensors
- Listen before talk (LBT orange) energy efficiency drops slower with more load, large impact by listening to the channel (yellow)
- To be determined next: how many **gateways** required; location for **processing**?



### **Discussion and Conclusion**

- Energy efficiency improvement required in future IoT and 6G networks
  - Reduction of **energy consumption** in each layer and in the network in general required
  - Improvement of energy efficiency
    - Identify **best case operation** of service or application
    - Quantify this energy consumption
    - Compare to actual energy consumption
  - Identify dependencies, benefits, and drawbacks among layers

### General goals

- Improve Quality of Information with same resource requirements
- Keep **Quality of Information** with less required resources
- Avoid worse Quality of Service or service quality
- Additional considerations: Usage of renewable or "free" energy
- → Improvement of energy efficiency of IoT requires **improvement of complete network**
- $\rightarrow$  Its key to **understand** future applications, networks, and services in detail

Challenging task